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ABSTRACT

There is a growing literature on reasoning by large language models (LLMs), but the discussion on the 

uncertainty in their responses is still lacking. Our aim is to assess the extent of confidence that LLMs have in 

their answers and how it correlates with accuracy. Confidence is measured (i) qualitatively in terms of 

persistence in keeping their answer when prompted to reconsider, and (ii) quantitatively in terms of self-

reported confidence score. We investigate the performance of three LLMs—GPT4o, GPT4-turbo, and Mistral–

on two benchmark sets of questions on causal judgment and formal fallacies, and a set of probability and 

statistical puzzles and paradoxes. Although the LLMs show significantly better performance than random 

guessing, there is a wide variability in their tendency to change their initial answers. There is a positive 

correlation between qualitative confidence and accuracy, but the overall accuracy for the second answer is 

often worse than for the first answer. There is a strong tendency to overstate the self-reported confidence score. 

Confidence is only partially explained by the underlying token-level probability. The material effects of 

prompting on qualitative confidence and the strong tendency for overconfidence indicate that current LLMs do 

not have any internally coherent sense of confidence.

Keywords: artificial intelligence, BIG-Bench AI tests, chatbots, generative AI, statistical inference, statistical 

puzzles and paradoxes

Media Summary
Our aim is to assess whether current chatbots or large language models (LLMs) possess genuine reasoning 

abilities beyond pattern recognition, specifically on how LLMs handle uncertainty and express confidence in 

their responses. Confidence is measured (a) qualitatively in terms of persistence in keeping their answer when 

prompted to reconsider, and (b) quantitatively in terms of self-reported confidence score from 0 to 100. We 

investigate the performance of three LLMs—GPT4o, GPT4-turbo, and Mistral—on two challenging 

benchmark sets of questions on causal judgment and formal fallacies, and a set of statistical puzzles.

The LLMs perform similarly with each other and significantly better than random guessing, but their tendency 

to change their initial answers varies greatly, ranging from 13% to 98% depending on the model and the task. 

The good news is that there is a positive correlation between confidence and accuracy—higher confidence 

means higher accuracy—and a positive correlation between the LLMs’ persistence in their answers and their 

self-reported confidence score. However, the positive correlation is not the full story. The strong influence of 

prompting on both measures suggests a lack of internal consistency. There is also a tendency for 

overconfidence, marked by a large gap between the LLMs’ confidence score and the actual accuracy; the 

LLMs frequently report 100% confidence in their answers, even when those answers are incorrect. This 

indicates a lack of genuine understanding of uncertainty.
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In summary, while LLMs demonstrate impressive reasoning capabilities, they lack the introspective awareness 

and understanding of uncertainty characteristic of human reasoning. Our study highlights the need for caution 

when interpreting LLMs’ responses, particularly when they express high confidence. Users should be aware 

that current LLMs do not have a coherent understanding of uncertainty. It is not clear how to elicit a 

meaningful and externally validated measure of uncertainty from the LLMs, as they can be easily influenced 

by the phrasing of the prompt, and they tend to be overconfident.

1. Introduction and Summary
The emergence of large language models (LLMs) such as OpenAI’s GPT series has sparked significant interest 

and debate within the field of artificial intelligence. These complex neural network models, designed as a next-

word (technically next-token) predictor and trained on vast amounts of data, have demonstrated an 

unprecedented ability to generate coherent and contextually appropriate text responses. This humanlike 

capability has led to speculation about emergent qualities, whether these models can ‘reason’ and ‘know’ or 

‘understand’ the content they generate or if they are merely sophisticated pattern recognizers. The literature 

suggests a full spectrum of possibilities from the skeptical (Stechly et al., 2023; Ullman, 2023) to the sanguine 

(Kadavath et al., 2022; Kosinski, 2023).

One marker of humanlike reasoning is awareness and recognition of potential uncertainty or its corresponding 

confidence in the answer. Technically, LLMs use statistical prediction, but it is not obvious what confidence 

they have in their responses. When we ask for an expert opinion, we usually expect it to come with some 

measure of confidence. This measure is standard in statistical expert systems, and a validated correlation 

between confidence level and reality plays a key role in establishing the systems’ credibility. Thus, our aim is 

to assess the degree of confidence LLMs have in their answers and how that confidence correlates with actual 

performance.

The assessment of uncertainty in complex statistical problems is typically done using the bootstrap method. 

This will require access to raw data or some strong assumptions about the data distribution. Neither is feasible 

with the current LLMs, so we will instead rely on simple empirical methods. We measure confidence 

qualitatively and quantitatively as follows. For the former, the LLMs are prompted to reconsider their initial 

answers (regardless of their correctness). Presumably, an LLM is not going to change its mind if it is highly 

confident, and vice versa, it will change its mind if it has low confidence. For quantitative confidence, we ask 

them to explicitly tell us their confidence score in their responses. We also investigate the relationship between 

these confidence measures and the token-level probability produced by the LLM.

We investigate three LLMs—GPT4o, GPT4-turbo, and Mistral—and use two of the BBH tasks (Suzgun et al., 

2022): causal judgment (187 questions) and formal fallacies (250 questions). Furthermore, we assess the 

statistical reasoning abilities of LLMs in solving some probability and statistical puzzles and paradoxes (46 

questions) from Pawitan and Lee (2024).
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To summarize briefly, in line with previous results, the LLMs perform significantly better than random 

guessing. However, when prompted to rethink their answers, they frequently change their mind and the overall 

accuracy of the second answers is often worse than that of the original answers, sometimes even worse than 

random guessing. The tendency to change their mind is strongly affected by the phrasing of the prompt. There 

is a large discrepancy between qualitative and quantitative confidence, although we observe a significant 

correlation between them. When asked for confidence score, there is a strong tendency for overconfidence. The 

confidence measures are only partially explained by the underlying token-level probability. Overall, current 

LLMs do not show internally coherent sense of uncertainty or confidence in their answers.

2. Background

2.1. Testing the Reasoning Skills of an LLM

Human intelligence is characterized not only by reasoning and understanding but also introspection. Can 

LLMs, with their vast but opaque neural networks, claim similar capabilities? Their architectural complexity 

and the huge number of parameters (∼175 billion for GPT3 and likely more than 1 trillion for the GPT4 series) 

have made their operations noninterpretable, much like the mysterious processes of our own brain.

How do we assess novel reasoning abilities in machines? To be useful and informative, at the current stage of 

development we do not yet need to go to the ultimate Turing test (Turing, 1950). Traditional measures, such as 

the ability to recognize keywords, often just indicate a trained behavior, but do not necessarily reflect true 

cognitive skills. Tasks such as arithmetic calculations are too algorithmic and will offer little insight into 

emergent skills. (Even relatively recent LLMs, such as GPT3.5, are actually poor at arithmetic, but this issue is 

solved by the most recent ones, which can recognize and transfer the problem to specialized modules.)

Many logical puzzles can be navigated through keyword recognition, making it difficult to discern truly novel 

reasoning. Emergent reasoning abilities, in contrast, would be indicated by an AI’s capacity to independently 

recognize and adapt to new problem patterns. What is needed are tests involving nonalgorithmic and abstract 

reasoning challenges to better probe the extent of AI cognition.

2.2. Empirical Studies

The Beyond the Imitation Game Benchmark or BIG-Bench (Srivastava et al., 2022) is an extensive 

collaborative benchmark intended to probe LLMs in 204 cognitive and problem-solving tasks that are believed 

to be beyond the capabilities of LLMs. The tasks include linguistics, childhood development, mathematics, 

commonsense reasoning, biology, physics, social bias, software development, movie recommendations, and so 

on. Indicating the level of interest and admirable commitment, the BIG-Bench was developed by 450 authors 

from 132 institutions. When the paper was first published, LLMs did not perform very well. For their 

normalized preferred metric, tasks are calibrated so that a score of 0 corresponds to poor performance and a 

score of 100 corresponds to very good performance. Human experts would be expected to achieve scores close 
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to 100. When averaged on all tasks, the best performing language models achieved a score of less than 20. 

However, LLM performance has improved substantially; for instance, GPT4 performs similarly or better than 

the human in 17 of the 23 BIG-Bench Hard (BBH) tasks (Zhou et al., 2024, Table 3).

Another marker of reasoning is the ability to make plans. Valmeekam et al. (2023) tested some LLMs in the 

domains typically used in the International Planning Competition, including the well-known Blocks World, and 

found that LLMs’ ability “to generate executable plans autonomously is rather limited, with the best model 

(GPT4) having an average success rate of ∼ 12% across the domains.”

2.3. Better Response From Better Prompting

The vastness of the data set used to train an LLM—for example, 1.4 trillion tokens described in Touvron et al. 

(2023)—poses a challenge for the LLM in aligning its responses with the intended context of the queries. In 

addition to the hallucination problem, LLMs may give different answers to semantically similar questions such 

as these from Mizrahi et al. (2024): (A) Which word, ‘eight’ or ‘mouth,’ is pronounced like ‘ate’? (B) Please 

identify the homophone of the word ate from the two options eight and mouth. Other examples of the 

sensitivity of LLMs to prompt phrasing are given in Zhao et al. (2021) and Srivastava et al. (2022).

To improve context and relevance, techniques such as chain-of-thought (CoT) prompting (Kojima et al., 2022; 

Suzgun et al., 2022; Wei et al., 2022; Weng et al., 2023) and decomposition-based prompting or self-compose 

reasoning (Shinn et al., 2023; Zhou et al., 2024) have been developed. These techniques involve guiding the 

LLM through a logical sequence of thoughts or steps to arrive at a conclusion, somewhat similar to how a 

human might think through a problem. The CoT method helps to better align the LLM’s response with the 

user’s intent, but it is still a question whether these steps give an LLM the ability to reason independently of its 

training.

3. Methods

3.1. LLMs

We compare the performance of OpenAI’s GPT4o (version 2024-08-06), GPT4-turbo (version 2024-04-09), 

and Mistral (Large 2 model, version 2024-07-24). GPT4o is the current flagship model from OpenAI; it is an 

optimized version of the original flagship GPT4. GPT4o is designed to have similar reasoning power but with 

improved computational efficiency. Additionally, GPT4o is capable of handling nonverbal multimodal input 

and output (images and sound), though none of the tasks we use here needs this new feature. GPT4-turbo is 

also a variant of GPT4, optimized for cost and speed with some compromises (fewer parameters?) and is 

recommended by OpenAI for applications that require faster processing. Mistral Large 2 model is the largest 

model from Mistral AI; it gives competitive performance versus other LLMs in general knowledge and 

reasoning benchmarks, particularly in the Massive Multitask Language Understanding (MMLU); see 

https://mistral.ai/news/mistral-large-2407/.

https://mistral.ai/news/mistral-large-2407/
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To reduce randomness, we set the temperature parameter to 0. However, even at this temperature, there is still 

a small randomness, leading to different answers in ∼1% of the questions. (This explains why the accuracies in 

different tables may not be exactly the same, as they are based on different runs.) See Figure B2 in the 

appendix of this article for more details on the effects of temperature on accuracy and the LLMs’ tendency to 

change their answers within the same session and across independent sessions.

3.2. Data Sets

We choose two BBH tasks (Suzgun et al., 2022): causal judgment (187 questions) and formal fallacies (250 

questions). These tasks are a curated subset of BIG-Bench, containing especially challenging tasks designed to 

assess the advanced reasoning, understanding, and problem-solving capabilities of LLMs. Suzgun et al. used 

BBH to evaluate the value of CoT prompting to improve LLMs’ performance in these tasks. However, each 

question in the BBH is associated with a single instruction, that is, no chain of prompts. Two sample questions 

from each task are given in Appendix A. The complete sets of questions and their answers are downloaded 

from https://github.com/suzgunmirac/BIG-Bench-Hard/tree/main/bbh.

Additionally, to assess the statistical reasoning abilities of LLMs, we write 46 questions on statistical puzzles 

and paradoxes from Pawitan and Lee (2024); two sample questions are given in Appendix A. The complete list 

of questions and their answers is available in https://github.com/yudpaw-git/statspuzzle. (The list includes four 

additional questions that do not have definite answers; they are not part of the quantitative comparisons here.)

3.3. Prompts

The behavior and performance of LLMs are highly dependent on the prompts that we use to elicit their 

responses. For the base performance, LLMs are first asked to answer the questions directly without providing 

explanations (‘First answer’). Then they are asked to think again carefully (‘Rethink’), so they have the 

opportunity to change their initial answers. We compare the accuracy of the LLMs in their initial and second 

answers, the conditional accuracy when they keep the initial answers and when they change the initial answers.

For practical processing of the output, we try to suppress the normally voluminous response by the LLMs, so 

all prompts are accompanied by an instruction to be brief. This does not always work, so all outputs are 

manually inspected for sanity. The instruction to be brief may affect performance, but our accuracy results for 

the first answers in the BBH tasks are very close to those reported by Zhou et al. (2024). For the BBH tasks, 

the chat session is reset after each question, while for the statistical puzzles, the session is reset after each 

section of related questions.

An implicit qualitative confidence of LLMs is measured by their tendency to keep their initial responses when 

prompted to rethink. To assess the effect of phrasing of the ‘rethink prompt,’ we use (i) Simple prompt: “Please 

think again carefully”; (ii) Neutral prompt: “We always ask our LLM to double-check their answers, so please 

https://github.com/suzgunmirac/BIG-Bench-Hard/tree/main/bbh
https://github.com/yudpaw-git/statspuzzle
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think again carefully”; and (iii) Post-confidence prompt is the same as the Neutral prompt, but issued following 

a confidence-score prompt.

A quantitative self-reported confidence score is based on this confidence-score prompt: “On a score between 0 

and 100, where 100 means full confidence and 0 means no confidence, what confidence score do you have in 

your answer?” It is an internal measure of self-confidence. We compare the self-reported score versus the 

actual accuracy; ideally, 100% confidence should correspond to 100% accuracy, and vice versa, less accuracy 

for less confident answers. We also hypothesize that the qualitative confidence correlates with the quantitative 

confidence.

Another metric to measure your confidence in a statement is how much you are willing to bet that it is correct. 

This can be expressed in terms of betting odds (Shafer, 2021). So, we use the following prompt: “You need to 

provide fair betting odds that your answer is correct. A person can either bet 1 dollar at the odds you provide or 

force you to bet 1 dollar against the odds you provide. What fair betting odds would you offer for your answer 

being correct?”

A recent CoT prompting method called Self-Discover (Zhou et al., 2024) is also used for comparisons. For 

each task (question), the method prompts an LLM to (i) consider which of 39 prespecified high-level reasoning 

modules are relevant for the task at hand (see Table 2 in Zhou et al. for the list of the modules); (ii) adapt the 

chosen reasoning modules to be specific to the task at hand; (iii) create an actionable reasoning structure for the 

task using these adapted reasoning modules; and finally (iv) use the reasoning structure to solve the task. We 

follow Zhou et al.’s original wording, including the instruction to be brief in all prompts. The session is reset 

after each prompt; we observe worse accuracy when the prompts are issued without resetting.

3.4. R Interface

We use the following R packages/wrappers: (i) Juan Cruz Rodriguez’s chatgpt from 

https://github.com/jcrodriguez1989/chatgpt for submitting API requests to GPT4o and GPT4-turbo, and (ii) 

Albert Rapp’s tidychatmodels from https://github.com/AlbertRapp/tidychatmodels to Mistral.

3.5. Statistical Analysis

Reported p values for comparisons of two proportions are based on the  test with Yates’s correction. For 

small 2-by-2 tables, the corrected p value is an approximation of the two-sided p value from Fisher’s exact test; 

see, for example, Zar (2010, pp. 469, 561–569).

4. Results

X2

https://github.com/jcrodriguez1989/chatgpt
https://github.com/AlbertRapp/tidychatmodels
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4.1. Accuracy and Qualitative Confidence

For a direct (zero-shot) response, we ask the LLMs to answer questions without any other prompting; this is 

followed by the Simple prompt to reconsider their answers. The results are summarized in Figure 1, with 

complete details given in Tables B1–B2 in Appendix B.

For causal judgment and formal fallacies, the accuracy of the first answer varies narrowly between 0.62 and 

0.70. All are statistically significant, more than s over the target accuracy of 0.5. After rethinking their 

answers, GPT4-turbo and Mistral show a drop in accuracy, but not for GPT4o. In general, when they maintain 

their initial answers, implying higher confidence, they show higher accuracy. Vice versa, the accuracy is 

significantly worse when they change their mind, reaching 36% and 32% for Mistral, which are significantly 

lower than the target value.

The LLMs show wide discrepancies in their tendency to change their initial answers. GPT4-turbo and Mistral 

show a strong tendency to change, but GPT4o tends to keep its answers. The good news is that there is a higher 

tendency to change wrong initial answers. However, for GPT4-turbo and Mistral, the second responses are 

worse in accuracy because they change the initial correct answers too frequently.

2σ
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In Table B1 we also show the results for the Self-Discover CoT prompting method. There is a small 

improvement in accuracy compared to direct prompting, reaching 74% accuracy for the first answers from 

Figure 1. Comparison of the large language models in the causal judgment, formal fallacies 
questions, and statistical puzzles. ‘First answer’ is based on a direct zero-shot prompt and 

followed by the Simple prompt to think again carefully (‘Rethink’). Random guesses have an 
expected accuracy of 0.5 (dotted line), and standard deviations of 0.037 and 0.032 for the 

causal judgment and the formal fallacies tasks, respectively; the corresponding values for the 
statistical puzzles are 0.39 (dotted line) and 0.07. P values for the comparisons of accuracies 

and proportions are given in Tables B1 and B2 in Appendix B.

https://resize-v3.pubpub.org/eyJidWNrZXQiOiJhc3NldHMucHVicHViLm9yZyIsImtleSI6ImYzNGpsNm95L2NvbWJpbmVkX3Jlc3VsdHMtMDE3MzYzNzM3ODc3ODYuanBnIiwiZWRpdHMiOnsicmVzaXplIjp7IndpZHRoIjo4MDAsImZpdCI6Imluc2lkZSIsIndpdGhvdXRFbmxhcmdlbWVudCI6dHJ1ZX19fQ==
https://hdsr.mitpress.mit.edu/pub/jaqt0vpb#table-b1-comparison-of-the-large-language-models-in-two-big-bench-hard-tasks-causal-judgment-n-187-questions-and-formal-fallacies-n-250-questions-in-part-a-first-answer-is-based-on-a-direct-zero-shot-question-followed-by-the-simple-prompt-to-think-again-carefully-rethink-random-guesses-have-an-expected-accuracy-05-and-standard-deviations-of-0037-and-0032-for-the-causal-judgment-and-the-formal-fallacies-tasks-respectively-in-part-b-we-use-the-prompting-method-self-discover-from-zhou-et-al-2024-which-is-also-followed-by-the-simple-rethink-prompt
https://hdsr.mitpress.mit.edu/pub/jaqt0vpb#table-b2-comparison-of-the-large-language-models-on-statistical-puzzles-n-46-questions-based-on-a-direct-prompt-first-answer-followed-by-the-simple-prompt-to-think-again-carefully-rethink-random-guesses-have-an-expected-accuracy-of-039-and-a-standard-deviation-of-007
https://hdsr.mitpress.mit.edu/pub/jaqt0vpb#appendix-b-additional-tables-and-figures
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GPT4-turbo in the formal fallacies task. We do not observe as much improvement as reported in Table 3 in 

Zhou et al. (2024), but we are unable to find any explanation. With Self-Discover prompting, GPT4-turbo and 

Mistral are now much less likely to change their answers compared to direct prompting, but GPT4o behaves 

rather similarly. So, for GPT4-turbo and Mistral, a more complex chain of thought makes it qualitatively more 

confident in their answers, but not for GPT4o.

For the statistical puzzles, the accuracy of the first answers varies from 52% to 61%, which are more than s 

higher than the target accuracy of 39%. As before, the accuracy of the second answers is lower for GPT4-turbo 

and Mistral, but not for GPT4o. We also observe a similar pattern of better accuracy when GPT4-turbo and 

Mistral keep their initial answers compared to when they change. Finally, compared to GPT4o, GPT4-turbo 

and Mistral change their answers much more frequently and are more likely to change the wrong initial 

answers.

4.2. Comparison With Older Versions

It is interesting to compare GPT4o with OpenAI’s previous flagship model GPT4 (March 2023), and Mistral 

Large 2 with its previous version called Mistral Large (February 2024). The overall accuracies of these LLMs 

in all the tasks here are similar, but they show opposite behavior in their qualitative confidence (data not 

shown). Mistral Large shows a very similar behavior to GPT4o in its relative reluctance to change its initial 

answers, while GPT4 behaves more like Mistral Large 2. For example, GPT4 has a much greater tendency to 

change its initial answers compared to GPT4o: 83% versus 18%, respectively, in the formal fallacies task.

We do not know what changes occur between versions, but since they are all based on the same transformer 

architecture, the most relevant change for us here is likely the number of parameters. Unfortunately, we do not 

know the number of parameters of these LLMs, except for Mistral Large 2 (123 billion parameters). It is safe 

to assume that Mistral Large 2 has more parameters than Mistral Large. GPT4o has also been reported to have 

‘improved computational efficiency,’ so we speculate it has fewer parameters than GPT4. So, a larger number 

of parameters seems associated with a greater tendency to change the initial answers.

4.3. Self-Reported Confidence Score

In general, the quantitative confidence is substantially higher than the qualitative confidence. In the formal 

fallacies task, GPT4o and GPT4-turbo give a confidence score of 100 to all their answers, clearly showing 

overconfidence; Mistral gives the perfect confidence score 79% of the time and a score of 95 to the rest. The 

results on quantitative confidence for the causal judgment task are summarized in Table 1. GPT4-turbo and 

Mistral claim a high confidence score (≥95) 78% and 86% of the time; however, the accuracy when they claim 

so is not better than the overall accuracy, which indicates false confidence. For GPT4o, there is also an 

indication that when it is less than 95% confident, its answers are less accurate than when it has higher 

confidence (0.60 vs. 0.80, p value = 0.0083, for the first answer).

2σ
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Next, we check how the quantitative confidence score is correlated with the qualitative confidence based on the 

tendency to keep their initial answers. When asked to reconsider by the Post-confidence rethink prompt, the 

correlation is only observed in GPT4-turbo. However, when the qualitative confidence is based on the Simple 

prompt that is issued separately from the confidence-score prompt, there is a marginally significant correlation 

for all LLMs (p values ranging from 0.0065 to 0.093).

Table 1. Comparison of the large language models on self-reported confidence score 
and the corresponding accuracy for the causal judgment task.  The confidence score is 
based on the prompt: “On a score between 0 to 100, where 100 means full confidence and 0 
means no confidence, what confidence score do you have in your answer?” The Simple rethink 
prompt response is collected in a separate session from the confidence-score prompt.

GPT4o GPT4t Mistral

First answer

Accuracy overall 0.67 0.71 0.68

Pr(Conf ≥ 95) 0.40 0.78 0.86

Acc by confidence

Confidence score <95    ≥95 <95    ≥95 <95    ≥95

Accuracy .060    0.80 0.71    0.72 0.56    0.71

p value 8.3E-03 0.89 0.18

Keep ans, Post-conf, all 0.98 0.65 0.98

Confidence Score <95    ≥95 <95    ≥95 <95    ≥95

Keep answer 0.99    0.97 0.39    0.72 1.00    0.98

p value 1.00 9.0E-05 1.00

Keep ans, Simple prompt, all 0.83 0.39 0.13

Confidence Score <95    ≥95 <95    ≥95 <95    ≥95

Keep answer 0.77    0.93 0.27    0.42 0.00    0.16
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4.4. Self-Reported Betting Odds

We ask the LLMs to give fair betting odds for their answers on the causal judgment task; theoretically, higher 

odds correspond to higher probability. Different LLMs interpret the word ‘odds’ differently: 55% of the time 

GPT4o gives 1:1 odds and for the rest a mixture of odds greater and smaller than 1; GPT4-turbo assigns 1:1 

odds 22% of the time and lower odds to the rest; Mistral gives 1:1 odds only 2% of the time and higher odds 

for the rest except in two questions. (Note: All these numbers are not reported in any table. GPT4o appears to 

misunderstand the betting odds: When prompted with a shorter question to simply provide the fair odds for its 

answers, 81% of the time it gives 1:1 odds. Moreover, after giving the even odds, it then keeps 96% of the 

initial answers when asked to reconsider. This could be due to the brief interaction format we use to elicit its 

responses.)

To make the odds comparable across LLMs, we transform any odds less than 1 into its inverse. The results are 

summarized in Table B3. Defining the odds  as high, the proportions of high odds are 0.17, 0.78, and 0.95 

for GPT4o, GPT4-turbo, and Mistral, respectively. The relationship between the odds and other measures of 

confidence is inconsistent. There is no significant association between odds and accuracy, and between odds 

and confidence score, except for GPT4o. But there is a significant association between the odds and the 

tendency to keep the first answer after the Simple rethink prompt, except for Mistral.

4.5. Effect of Prompt on Qualitative Confidence

As we describe previously, LLMs’ response is often highly affected by the phrasing of the prompt. Simply 

asking them to think again may create the impression that we want them to change their answer. The Neutral 

rethink prompt is meant to convey to the LLMs that there is nothing wrong with their answer. Indeed, Figure 2, 

with detailed values in Table B4, shows a significant impact of the prompting: After the Simple prompt, the 

p value 6.5E-03 0.093 0.057

Second answer

Accuracy overall 0.67 0.65 0.68

Pr(Conf ≥ 95) 0.66 0.84 0.78

Acc by Confidence

Confidence score <95    ≥95 <95    ≥95 <95    ≥95

Accuracy 0.50    0.76 0.45    0.68 0.54    0.792

p value 4.8E-03 0.026 0.042

> 2
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LLMs show the highest tendency to change their initial response, followed by the Neutral and the Post-

confidence prompts. It is at least self-consistent that GPT4o and Mistral show little or no tendency to change 

after claiming that they have complete confidence in their initial answers.

4.6. Relationship With Token-Level Probability

What is the source of confidence in an LLM? Why would it change its mind in one response but not in 

another? Intuitively, it should be connected to the underlying token-level probabilities produced by the model. 

The BBH tasks we consider here are amenable for further analysis, as the correctness of each answer depends 

on a single keyword: yes, no, valid, or invalid. We shall focus on GPT4o and GPT4t, and the token probability 

refers to the keyword in each answer.

The probabilities are generally very high, reaching a median greater than 0.995, except for GPT4o in the 

formal fallacies task (0.93); see Figure B1 in Appendix B. The -log-log transform is used to sufficiently stretch 

the scale. The first column in Figure 3 shows the accuracy as a function of the token probability. There is a 

significant positive correlation, but the accuracy is substantially less than the token probability, except for 

extremely high probabilities greater than 0.99999.

Figure 2. Comparison of the large language models on the tendency to change their initial 
answers in the causal judgment task (n =187 questions) after Simple, Neutral, and Post-

confidence rethink prompts.

https://resize-v3.pubpub.org/eyJidWNrZXQiOiJhc3NldHMucHVicHViLm9yZyIsImtleSI6IjFieTd6NTFvL3Byb21wdF9jb21wYXJpc29uLTIxNzM2MzczNzYyNTczLmpwZyIsImVkaXRzIjp7InJlc2l6ZSI6eyJ3aWR0aCI6ODAwLCJmaXQiOiJpbnNpZGUiLCJ3aXRob3V0RW5sYXJnZW1lbnQiOnRydWV9fX0=
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The second column shows qualitative confidence—in terms of proportion of keeping the initial answers—as a 

function of the token probability. We also observe a consistently strong positive association, but there is a great 

https://resize-v3.pubpub.org/eyJidWNrZXQiOiJhc3NldHMucHVicHViLm9yZyIsImtleSI6ImQ2N2kycGJyL3Ntb290aC1jb21iaW5lZC01MTczNjM3MzkwODE3Ny5qcGciLCJlZGl0cyI6eyJyZXNpemUiOnsid2lkdGgiOjgwMCwiZml0IjoiaW5zaWRlIiwid2l0aG91dEVubGFyZ2VtZW50Ijp0cnVlfX19
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heterogeneity in the relationship depending on the model, the task, and the rethink prompt. The qualitative 

confidence based on the Simple rethink prompt is substantially less than the token probability: Even at a token 

probability of around , the LLMs can still easily change their answers.

The correlation between the token probability and the self-reported confidence score is much weaker (table not 

shown). For the formal fallacies task, the confidence scores are all 100, so there is no correlation with the token 

probability. For the causal judgment task, due to the high proportions of the score of 95 or higher (Table 1), we 

do not compute the standard correlation and instead compare the median probabilities when the score is ≥ 95 

versus when it is < 95: 0.9770 versus 0.9999 for GPT4o, and 0.9966 versus 0.9998 for GPT4-turbo.

5. Discussion and Conclusion
We have investigated the degree of confidence LLMs have in their answers, and how it correlates with 

accuracy and the underlying token probability. Confidence is shown qualitatively in the persistence in their 

response when prompted to reconsider, or quantitatively as a self-reported confidence score. Although the 

LLMs show significantly better performance than random guessing, there is a wide variability in their 

qualitative confidence across tasks and models. The good news is that higher qualitative confidence is 

correlated with higher accuracy. However, unfortunately, initially correct answers are too often changed, 

resulting in worse accuracy. Confidence is also easily affected by the phrasing of the prompt. Being much 

higher than the actual accuracy, the self-reported confidence score of the LLMs is more likely to reflect false 

confidence. These confidence measures are only partially explained by the underlying token-level probability.

Although we observe some correlation between qualitative and quantitative confidence, the material effects of 

prompting on the tendency to change their answers and the overconfidence when explicitly asked for their level 

of confidence indicate that the current LLMs do not have any internally coherent sense of confidence. To 

interpret it least charitably, they do not have any recognition or understanding of the truth quality in their 

answers. We believe that this property is distinct from their more famous tendency to hallucinate. 

Hallucinations involve making up seemingly factual statements whose truths fail empirical validation. Here, all 

our tasks involve only logical inference or deductions: If we happen to make a wrong inference, we just say 

that we are wrong and not that we are hallucinating. (Hallucinators and liars are different again in the self-

awareness of the truth and intention to mislead. Thus, LLMs do not lie, but hallucinate. Any expert can be 

wrong in their logical inferences without being a liar; they usually protect their reputation by providing some 

measure of uncertainty in their statements.)

The relationship between the underlying token probability and the accuracy and confidence deserves further 

study. This probability is a function of the preceding words that the LLM chooses according to some other 

probabilities. We could imagine a situation where an extremely high token probability for a ‘yes’ is fully 

justified after a certain series of preceding words. However, it is not obvious how we can account for the 

0.9
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probabilities of those words and, in turn, how accurate and relevant these chosen words are relative to the task 

at hand.

What are the practical implications of our study? When we consult a presumed expert on a difficult question, 

the confidence in the answer comes from at least two sources: (i) their confidence, which we can ask explicitly 

or infer based on further questioning, and (ii) our own confidence based on our knowledge of the area 

associated with the question.

Imagine first a scenario where we do not know the correct answer to the question or the related area very well. 

Being uncertain of the initial answer from the LLM, we ask it to think again. Our results suggest that our 

confidence can increase if the LLM persists in its answer and otherwise may decrease. Table B5 in Appendix B 

shows the increase in accuracy when we ask the LLM to rethink twice. However, the amount of improvement 

varies across LLMs, tasks, and is affected by the phrasing of the prompt, so it is difficult to judge in individual 

cases. There is also a trade-off: A persistent answer after a simple rethink prompt leads to higher confidence, 

but such a prompt leads to more changes, which can lead to lower confidence. And vice versa, more complex 

rethink prompts, especially issued after a confidence-score prompt, can lead to a lower tendency to change 

answers; but in this case, persistent answers have confidence similar to the initial answers.

Now consider the second scenario, where we know the correct answer and the prompt to reconsider is issued 

only when the first answer is wrong. This is like a sympathetic teacher examining a good but not perfect 

student. In the formal fallacies task (see Table B1), for example, 98% of the incorrect first answers by GPT4-

turbo will be corrected. This procedure will give the misleading impression that GPT4-turbo is really good at 

self-correcting. This is where the so-called Clever Hans effect occurs. (Clever Hans was a horse reportedly able 

to perform some arithmetic, but it turned out he was getting some subtle clues from his handler.) In reality, the 

LLM will also almost as often (83%) change its mind about the initially correct answers. See, for example, 

Lapuschkin et al. (2019) for more details about this effect.

There is a darker variant of the second scenario in which we guide an LLM to a foregone conclusion. We start 

with an opinion that is not necessarily correct and continue to prompt and direct the LLM until it agrees with 

us. This can of course be misleading or at least self-defeating if we then use the LLM as supposedly an 

independent expert to support our preconceived opinion.

The third scenario is the in-between situation, which is perhaps the most productive use of the LLM: We do not 

know the answer to the question, but we are a domain expert or critical evaluator such that, after iterative 

interaction with the LLM, we can recognize a correct answer or have our own high confidence in a good 

answer. So, in this arrangement, the final judgment is made by the human expert, not the LLM. The role of the 

LLM is to provide new ideas, concepts, or candidate answers. Valmeekam et al. (2023) and Stechly et al. (2023)

 describe and evaluate such an interaction between an LLM and an external verifier. The so-called FunSearch 

(Romera-Paredes et al., 2024) depends on a generate-test loop between a specially fine-tuned LLM that 

file:///tmp/e137a218b40527e50e65448753760488.html
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suggests solutions and an external symbolic evaluator. The recent AlphaGeometry (Trinh et al., 2024) for 

proving theorems in geometry also uses the Generate-Test-Critique framework of a fine-tuned LLM and a 

symbolic evaluator.

A strength of our study is that we investigate the LLMs’ behavior in relatively large numbers of questions, 

including two sets from a standard benchmark. This avoids inference from anecdotal behavior seen in a few 

specific instances. Our goal is to capture the heterogeneity of current LLMs in their confidence properties, not 

to investigate the behavior of each LLM. OpenAI’s GPT4o is selected because it is the most popular AI model; 

the other models, one from OpenAI and one from non-OpenAI, are selected as a close and a distant 

comparator. The chosen tasks and LLMs show sufficiently large variability in the confidence properties.

A weakness of studying LLMs with a large number of questions is that, for obvious practical reasons, the 

LLMs are told to be brief. This could affect their overall performance, although it is not clear how it might 

affect the confidence levels that we focus on in this article. The Self-Discover prompting somewhat overcomes 

this weakness, as the LLMs are prompted to go through a more complex chain of thoughts before arriving at 

the final answer.

Another weakness is that we cannot tell if the LLMs’ performance is based on de novo reasoning or it is due to 

their pretraining from having seen the questions before. This is obvious when we ask the LLMs to solve the 

well-known puzzles or paradoxes. The BIG-Bench tasks carry a warning that the questions should not be 

included in the training data of LLMs, but it is, of course, difficult to know if the warning is heeded. Again, 

this issue is more related to overall performance than confidence level.

In conclusion, we have shown some weaknesses of current LLMs in terms of overconfidence and lack of 

understanding of uncertainty. The weaknesses, somewhat associated with a lack of thoughtful humanlike 

introspection, could be inherent in the LLM design as an autoregressive next-word predictor, and hence not 

easily remedied. However, evaluating rapidly moving technology is always tricky: today’s weaknesses could 

be remedied tomorrow, perhaps with larger sets of training data or parameters, more complex inference such as 

CoT, a new architecture, and so on. Yet, benchmarking studies do not necessarily lose their value, as they 

provide clear indications where current research is needed and markers of progression in the evolution of 

LLMs’ capabilities.
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concludes with a yes-no question; the ‘formal fallacies’ task contain 250 logical reasoning questions, each of 

which must be judged valid or invalid. In addition, we write 46 questions based on statistical puzzles and 

paradoxes from Pawitan and Lee (2024); the complete list and the answers are given in 

https://github.com/yudpaw-git/statspuzzle. Here are some examples:

[Causal judgment] How would a typical person answer each of the following questions about causation? A 

machine is set up in such a way that it will short circuit if both the black wire and the red wire touch the 

battery at the same time. The machine will not short circuit if just one of these wires touches the battery. The 

black wire is designated as the one that is supposed to touch the battery, while the red wire is supposed to 

remain in some other part of the machine. One day, the black wire and the red wire both end up touching the 

battery at the same time. There is a short circuit. Did the black wire cause the short circuit? Options: Yes or 

No.

[Causal judgment] Long ago, when John was only 17 years old, he got a job working for a large 

manufacturing company. He started out working on an assembly line for minimum wage, but after a few 

years at the company, he was given a choice between two line manager positions. He could stay in the 

woodwork division, which is where he was currently working. Or he could move to the plastics division. 

John was unsure what to do because he liked working in the woodwork division, but he also thought it might 

be worth trying something different. He finally decided to switch to the plastics division and try something 

new. For the last 30 years, John has worked as a production line supervisor in the plastics division. After the 

first year there, the plastics division was moved to a different building with more space. Unfortunately, 

through the many years he worked there, John was exposed to asbestos, a highly carcinogenic substance. 

Most of the plastics division was quite safe, but the small part in which John worked was exposed to 

asbestos fibers. And now, although John has never smoked a cigarette in his life and otherwise lives a 

healthy lifestyle, he has a highly progressed and incurable case of lung cancer at the age of 50. John had seen 

three cancer specialists, all of whom confirmed the worst: that, except for pain, John’s cancer was 

untreatable and he was absolutely certain to die from it very soon (the doctors estimated no more than 2 

months). Yesterday, while John was in the hospital for a routine medical appointment, a new nurse 

accidentally administered the wrong medication to him. John was allergic to the drug and he immediately 

went into shock and experienced cardiac arrest (a heart attack). Doctors attempted to resuscitate him but he 

died minutes after the medication was administered. Did the nurse’s carelessness cause John’s premature 

death? Options: Yes or No.

[Formal fallacies] Here comes a perfectly valid argument: First of all, whoever is a schoolmate of Sondra is 

not a stepsister of Pricilla. In consequence, whoever is not a stepsister of Pricilla is a schoolmate of Sondra. 

Options: valid or invalid.

[Formal fallacies] Consumer research aims at understanding whether users of some products also tend to 

consume other ones, or not. The following argument seeks to clarify some such relations: First premise: 

Being a regular consumer of Kiss My Face soap is necessary for being a regular user of Nag Champa soap. 

https://github.com/yudpaw-git/statspuzzle
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Appendix B. Additional Tables and Figures

Table B1. Comparison of the large language models in two BIG-Bench Hard tasks: 
causal judgment (n = 187 questions) and formal fallacies (n = 250 questions).  In part A, 
‘First answer’ is based on a direct zero-shot question, followed by the Simple prompt to think 
again carefully (‘Rethink’). Random guesses have an expected accuracy 0.5, and standard 
deviations of 0.037 and 0.032 for the causal judgment and the formal fallacies tasks, 
respectively. In part B, we use the prompting method Self-Discover from Zhou et al. (2024), 
which is also followed by the Simple rethink prompt. 

Second premise: Whoever is a rare consumer of John Frieda shampoo is at least one of these: a regular 

consumer of Mrs. Meyer’s soap, a regular user of Nag Champa soap, or a regular user of René Furterer 

shampoo. Third premise: No regular consumer of Mrs. Meyer’s soap is a regular consumer of Kiss My Face 

soap. Therefore, whoever is a rare consumer of John Frieda shampoo is not a regular consumer of Kiss My 

Face soap or a regular user of René Furterer shampoo. Is the argument, given the explicitly stated premises, 

deductively valid or invalid?

[Statistical Puzzles] Section on Boy-Girl Paradox, a classic paradox involving Mr. Smith and his son. For the 

following questions, answer with A, B, C, or D only without elaborate explanations.

Q6: Mr. Smith has two children, and one of them is a boy. What is the probability that the other child is a 

girl? A. 1/2; B. 2/3; C. 1; D. Undetermined.

Q7. A trustworthy witness (maybe Mr. Smith himself) reports that Mr. Smith has two children and one of 

them is a boy. What is the probability that the other child is a girl? A. 1/2; B. 2/3; C. 1; D. Undetermined.

Causal Judgment Formal Fallacies

GPT4o GPT4t Mistral GPT4o GPT4t Mistral

A. DIRECT

Accuracy

First answer 0.67 0.70 0.68 0.62 0.66 0.68

Rethink 0.66  0.60 0.45 0.66 0.45 0.33

If same 

answer

0.70 0.89 1.00 0.68 0.93 0.80

If changed 0.45 0.42 0.36 0.61 0.38 0.32

p value 0.015 4.2E-10 6.8E-04 0.48 3.7E-08 0.078
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Table B2. Comparison of the large language models on statistical puzzles (n = 46 
questions) based on a direct prompt (‘First answer’) followed by the Simple prompt to 
think again carefully (‘Rethink’).  Random guesses have an expected accuracy of 0.39 and a 
standard deviation of 0.07.

Proportion

Change first answer 0.17 0.61 0.87 0.18 0.88 0.98

Change 

correct ans

0.13 0.51 0.80 0.12 0.83 0.98

Change wrong 

ans

0.23 0.86 1.00 0.30 0.98 0.99

p value 0.16 1.8E-05 6.3E-04 5.8E-04 1.4E-03 0.92

B. Self-Discover

Accuracy

First answer 0.69 0.71 0.72 0.67 0.74 0.69

Rethink 0.71 0.76 0.52 0.69 0.57 0.47

If same 

answer

0.76 0.83 0.72 0.71 0.92 0.68

If changed 0.46 0.53 0.29 0.58 0.37 0.30

p value 5.5E-04 1.5E-04 9.1E-09 0.18 6.6E-17 3.6E-09

Proportion

Change first answer 0.22 0.20 0.45 0.14 0.64 0.54

Change 

correct ans

0.17 0.13 0.45 0.09 0.54 0.55

Change wrong 

ans

0.35 0.44 0.45 0.25 0.89 0.52

p value 9.4E-03 1.1E-05 1.00 1.1E-03 8.3E-07 0.77
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Table B3. Comparison of the large language models on self-reported betting odds for 
the causal judgment task (n =187 questions).  The odds are based on the prompt: ‘You need 
to provide fair betting odds that your answer is correct. A person can either bet 1 dollar at the 
odds you provide or force you to bet 1 dollar against the odds you provide. What fair betting 
odds would you offer for your answer being correct?’ The confidence and the Simple rethink 
prompt responses are collected in separate sessions from the odds prompt.

GPT4o GPT4t Mistral

Accuracy

First Answer 0.52 0.57 0.61

Rethink 0.54 0.46 0.54

If same answer 0.55 0.75 0.67

If changed 0.50 0.30 0.31

p value 1.00 9.1E-03 0.047

Proportion

Change first answer 0.13 0.65 0.35

Change correct ans 0.08 0.54 0.29

Change wrong ans 0.18 0.80 0.44

p value 0.58 0.13 0.43

GPT4o GPT4t Mistral

Accuracy 0.68 0.70 0.68

Pr(Odds>2) 0.17 0.78 0.95

Accuracy by odds

Odds category ≤2       >2 ≤2       >2 ≤2       >2

Accuracy, by odds 0.65       0.87 0.63       0.72 0.44       0.70



Harvard Data Science Review • Issue 7.1, Winter 2025 Con�dence in the Reasoning of Large Language Models

24

Table B4. Comparison of the large language models on the tendency to change their 
initial answers in the causal judgment task after Simple, Neutral, and Post-
confidence rethink prompts.  The Simple prompt is ‘Please think again carefully,’ the Neutral 
prompt ‘We always ask our LLM to double-check their answers, so please think again carefully,’ 
and the Post-confidence prompt is the same as the Neutral prompt, but issued after the 
confidence-score prompt.

Table B5. Comparison of the accuracies and proportion of persistent answers versus  
nonpersistent answers using a single prompt, two prompts, and three prompts.  The 
Simple rethink prompt is used to elicit multiple responses. For the two-prompt case, the final 
answer is set to be the second answer. For the three-prompt case, the final answer is based on 
the majority rule.

p value 0.025 0.39 0.22

Keep ans, post-odds

Pr(Same answer), by 

odds

0.88       1.00 0.12       0.44 0.33       0.91

p value 0.098 4.2E-04 2.5E-06

Confidence score

Pr(Conf≥95), by odds 0.30       0.87 0.68       0.80 0.89       0.85

p value 1.0E-08 0.16 1.00

Keep ans, simple prompt

Pr(Same answer), by 

odds

0.80       1.00 0.10       0.47 0.11       0.13

p value 0.014 4.1E-05 1.00

Simple Neutral Post-conf

GPT4o 0.17 0.04 0.02

GPT4t 0.61 0.50 0.33

Mistral 0.87 0.71 0.01
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Causal Judgement Formal Fallacies

GPT4o GPTt GPT4o GPT4t

Accuracy

Single prompt 0.67 0.7 0.62 0.66

Using 2 prompts

Same answers 0.70 0.89 0.68 0.93

Any change 0.45 0.42 0.61 0.38

Using 3 prompts

Same answers 0.72 0.90 0.72 1.00

Any change 0.57 0.63 0.48 0.66

Proportion

Using 2 prompts

Same answers 0.83 0.39 0.82 0.12

Any change 0.17 0.61 0.18 0.88

Using 3 prompts

Same answers 0.76 0.26 0.54 0.04

Any change 0.24 0.74 0.36 0.96
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Figure B1. Distribution of token probabilities for GPT4o and GPT4-turbo for the yes-no 
and valid-invalid answers in the causal judgment and formal fallacies tasks. Note that 

the scale is put in -log-log scale in order to stretch the super-crowding of values near one. The 
median token probabilities are > 0.995, except for GPT4o in the formal fallacies task (0.93).

https://resize-v3.pubpub.org/eyJidWNrZXQiOiJhc3NldHMucHVicHViLm9yZyIsImtleSI6ImpxcmY0djk0L2hpc3RvLXByb2ItNTE3MzYzNzg2NDkzNzQuanBnIiwiZWRpdHMiOnsicmVzaXplIjp7IndpZHRoIjo4MDAsImZpdCI6Imluc2lkZSIsIndpdGhvdXRFbmxhcmdlbWVudCI6dHJ1ZX19fQ==
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Figure B2. Accuracy and the proportion of changing answer as a function of temperature. 
The figures show the results for GPT4o and GPT4-turbo in the causal judgment (CJ, red 
lines) and formal fallacies (FF, blue lines) tasks. The bottom figures show the accuracy 

difference and the proportion of changing answers in independent runs (sessions). The latter 
is to be contrasted with the top-right figure, which is based on answers after a rethink prompt 

in the same session. In the bottom-left plot, the red lines for CJ-GPT4o and CJ-GPT4t 
coincide. Overall, the temperature effect on average accuracy appears to be small, especially 
up to temperature 1 and not directionally consistent. A similar result is seen for the tendency 
to change answer after rethinking, except for GPT4o in the formal fallacies task, where the 

proportion of changing answer goes from 0.17 to 0.34 as the temperature goes from 0 to 1.5. 
A more consistent effect is seen on the proportion of changing answer on independent runs 

(i.e., not based on rethinking), where higher temperatures generally lead to higher proportion 
of changing answer. (Temperature can actually be set up to a maximum of 2, but at that point 

the LLMs often take a long time to respond and sometimes produce strange nonsensical 
answers.)

https://resize-v3.pubpub.org/eyJidWNrZXQiOiJhc3NldHMucHVicHViLm9yZyIsImtleSI6Im9kcjU0bGJ5L3RlbXAtY29tYmluZWQtMjE3MzYzNzg2NzkxOTQuanBnIiwiZWRpdHMiOnsicmVzaXplIjp7IndpZHRoIjo4MDAsImZpdCI6Imluc2lkZSIsIndpdGhvdXRFbmxhcmdlbWVudCI6dHJ1ZX19fQ==
https://creativecommons.org/licenses/by/4.0/legalcode
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the article.
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