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ABSTRACT

Two new postprocessing methods are proposed to reduce numerical weather prediction’s systematic and

random errors. The first method consists of running a postprocessing algorithm inspired by the Kalman filter

(KF) through an ordered set of analog forecasts rather than a sequence of forecasts in time (ANKF). The

analog of a forecast for a given location and time is defined as a past prediction that matches selected features

of the current forecast. The second method is the weighted average of the observations that verified when the

10 best analogs were valid (AN). ANKF and AN are tested for 10-m wind speed predictions from the Weather

Research and Forecasting (WRF) model, with observations from 400 surface stations over the western United

States for a 6-month period. Both AN and ANKF predict drastic changes in forecast error (e.g., associated

with rapid weather regime changes), a feature lacking in KF and a 7-day running-mean correction (7-Day).

The AN almost eliminates the bias of the raw prediction (Raw), while ANKF drastically reduces it with values

slightly worse than KF. Both analog-based methods are also able to reduce random errors, therefore im-

proving the predictive skill of Raw. The AN is consistently the best, with average improvements of 10%, 20%,

25%, and 35% with respect to ANKF, KF, 7-Day, and Raw, as measured by centered root-mean-square error,

and of 5%, 20%, 25%, and 40%, as measured by rank correlation. Moreover, being a prediction based solely

on observations, AN results in an efficient downscaling procedure that eliminates representativeness dis-

crepancies between observations and predictions.

1. Introduction

In recent years, the increasing demand for accurate

weather forecasts has led to a steady improvement of the

skill of numerical weather predictions at both global and

regional scales. Despite these improvements, such pre-

dictions are still affected by imperfect initial conditions,

numerical approximations, and simplification (or alto-

gether lack of representation) of the physical and chemical

processes that govern the evolution of the atmosphere.

These imperfections, approximations, and simplifica-

tions result in random and systematic errors (e.g., bias)

that affect the predictions’ accuracy. Bias here is defined

as the ‘‘difference of the central location of the forecasts

and the observations’’ (Jolliffe and Stephenson 2003).

Several contributions can be found in the literature

proposing algorithms to predict these errors, particularly

the systematic component: methods based on 1) running-

mean corrections for numerical weather predictions

(NWP; e.g., Stensrud and Skindlov 1996; Stensrud and

Yussouf 2003; Eckel and Mass 2005; Hacker and Rife

2007), and air quality (AQ) predictions (e.g., Wilczak et al.

2006); 2) state-dependent corrections (e.g., Leith 1978;

Corresponding author address: Luca Delle Monache, Research

Applications Laboratory, National Center for Atmospheric Re-

search, P.O. Box 3000, Boulder, CO 80307-3000.

E-mail: lucadm@ucar.edu

3554 M O N T H L Y W E A T H E R R E V I E W VOLUME 139

DOI: 10.1175/2011MWR3653.1

� 2011 American Meteorological Society



DelSole and Hou 1999; Danforth et al. 2007; Danforth

and Kalnay 2008); 3) postprocessing algorithms inspired

by the Kalman filter (KF) for NWP (e.g., Homleid 1995;

Roeger et al. 2003; McCollor and Stull 2008; Rincon

et al. 2010) and AQ (Delle Monache et al. 2006, 2008;

Djalalova et al. 2010; Kang et al. 2010); 4) model output

statistics approaches (e.g., Glahn and Lowry 1972;

Carter et al. 1989; Jacks et al. 1990; Hart et al. 2004;

Wilks and Hamill 2007); and 5) gene-expression algo-

rithms (e.g., Bakhshaii and Stull 2009).

The KF postprocessing approach implemented in this

study is linear, adaptive, and recursive; it is easy to im-

plement and computationally inexpensive. Its advan-

tages include a short training period (i.e., few weeks),

and the ability to adapt to changing synoptic conditions,

changing seasons, and even changing models. However,

a disadvantage of this method is that it is not likely to

predict sudden changes of the forecast error caused by

rapid transitions from one weather regime to another.

Initially KF may not be able to correctly estimate the

forecast error when these changes happen, but it then

quickly adapts to these changes in the following cycles

(Delle Monache et al. 2006).

Two new methods are proposed to address this

shortcoming. The first method combines the KF post-

processing algorithm with an analog approach (ANKF).

The second scheme is based purely on observations that

verified when analog forecasts were valid (AN). The

analog of a forecast for a given location and time is de-

fined as a past prediction that matches selected features

of the current forecast. The basic idea underlying the

new proposed methods is that if forecasts in the past

(called here analogs) can be found that are similar to the

current prediction, we can infer information about the

forecast error by analyzing the errors of the analogs, for

which verifying observations are available.

The analog concept and its potential usefulness for

weather forecasting have been explored by several in-

vestigators. Various procedures have been formulated,

including different predictors and analog-selection criteria.

Applications include idealized cases with low-order

models (Ren and Chou 2006; Ren et al. 2009), general

circulation modeling (Radinovic 1975; Van den Dool

1989, 1994, 2007; Gao et al. 2006; Ren and Chou 2007); long-

range weather (Bergen and Harnack 1982; Livezey and

Barnston 1988; Toth 1989; Xavier and Goswami 2007), sea

ice-anomaly prediction (Chapman and Walsh 1991), short-

term visibility (Esterle 1992), mesoscale transport forecasts

(Carter and Keislar 2000), El Niño–Southern Oscillation

index forecasts (Drosdowsky 1994), and calibration of

probabilistic predictions (Hamill and Whitaker 2006).

ANKF and AN are tested with 10-m wind speed fore-

casts from the Weather Research and Forecasting (WRF)

modeling system (Skamarock et al. 2008), with 1–24-h

forecasts issued at 0100 UTC. Hourly predictions are

compared to 400 surface wind observations for a 6-month

period and over a domain centered on northeast Col-

orado. The performance of ANKF and AN methods is

compared to the skill of 1) the raw forecast (Raw), 2)

a 7-day running-mean correction (7-Day), and 3) the

KF approach.

The following section describes the postprocessing

methods, section 3 outlines the design of the testing pro-

cedure, section 4 includes a sensitivity analysis for ANKF

and AN, and section 5 presents the results. Section 6

summarizes this work and states conclusions drawn from

it.

2. Postprocessing methods

First, a simple 7-day running-mean correction (7-Day),

used as a reference against which the more sophisticated

methods are compared, is introduced. Then, the KF

method is described with a brief discussion of its ad-

vantages and disadvantages. Two new methods are

introduced to address the disadvantages of the KF

method: ANKF that consists in running KF through an

ordered set of analog forecasts rather than in time and

AN, which is solely based on analogs as explained in

section 2d. This section is concluded with an example of

AN and ANKF, and a summary of key aspects of their

design and differences.

a. 7-day running-mean correction (7-Day)

The most recent 7-day running-mean of the prediction

errors is used as a bias estimate for the current forecast

(e.g., Wilczak et al. 2006 for AQ; and Stensrud and

Skindlov 1996; Stensrud and Yussouf 2003; Eckel and

Mass 2005; Hacker and Rife 2007 for NWP). We choose

a 7-day averaging window after investigating the sensi-

tivity of the performance of the running-mean with the

dataset analyzed in this study (not shown), as measured

by root-mean-square-error (RMSE) and rank correla-

tion (defined in section 3b). Similar window length has

also been chosen by other authors for different appli-

cations (e.g., Stensrud and Skindlov 1996; Stensrud and

Yussouf 2003; Wilczak et al. 2006; Hacker and Rife

2007). The advantage of this method is its simplicity and

ability to improve raw predictions, while its limitations

stem from its lack of skill in predicting bias changes

occurring at a temporal scale shorter than 7 days.

b. Postprocessing method inspired by the
Kalman filter

In the postprocessing method inspired by the KF, past

prediction errors at a given location (i.e., the difference
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between forecasts and observations) are used to esti-

mate the bias in the current raw forecast [see Fig. 1 in

Delle Monache et al. (2006) for the algorithm flow dia-

gram]. As opposed to the 7-day running mean, it can be

seen as an exponential weighted mean where recent

errors are weighted more than past errors.

The true (unknown) forecast bias xt at time t is mod-

eled by the previous true bias plus a noise term ht, which

is normally distributed with zero-mean and a variance

s2
h,t (Bozic 1994):

xt 5 xt2Dt 1 ht, (1)

where Dt is a time lag. Because of unresolved terrain

features, numerical noise, lack of accuracy in the phys-

ical parameterizations, and errors in the observations

themselves, the KF approach further assumes that the

forecast error yt (forecast minus observation at time t) is

corrupted by an unsystematic error term «t:

yt 5 xt 1 «t 5 xt2Dt 1 ht 1 «t, (2)

where «t is normally distributed with zero-mean and

variance s2
«,t.

In the postprocessing algorithm inspired by the Kal-

man filter (Kalman 1960) the recursive predictor of xt

(derived by minimizing the expected mean-square er-

ror) can be written as a combination of the previous

predicted bias and the previous forecast error:

x̂t1Dtjt 5 x̂tjt2Dt 1 Kt( yt 2 x̂tjt2Dt), (3)

where the hat (^) indicates the estimate.

The weighting factor Kt, called the Kalman gain, can

be calculated from

Kt 5
pt2Dt 1 s2

h,t

( pt2Dt 1 s2
h,t 1 s2

«,t)
, (4)

where p is the expected mean-square error, which can be

computed as follows:

pt 5 ( pt2Dt 1 s2
h,t)(1 2 Kt). (5)

The KF algorithm will quickly converge for any rea-

sonable initial estimate of p0 and K0. It is easy to imple-

ment and fast running, requiring storage of few coefficients

for each site and forecast hour. The filter algorithm is run

independently on data for each forecast hour, using only

values from previous days at the same forecast hour [i.e.,

Dt 5 24 h in Eqs. (1)–(5)] to take into account the diurnal

behavior of the forecast bias. Additional details of the

algorithm including how s2
h,t and s2

«,t are estimated can

be found in section 2 and appendix A of Delle Monache

et al. (2006).

The KF approach adapts its coefficients as new fore-

casts and observations become available. Advantages are

a short training period (i.e., few weeks), and the ability to

adapt to changing synoptic conditions, changing seasons,

and even changing weather forecast or AQ models. A

disadvantage is that it is less likely to predict extreme

bias events; namely, it is unable to anticipate a large

forecast error when all errors for the past few days have

been smaller.

c. Kalman filtering through an ordered set
of analog forecasts (ANKF)

The disadvantages of KF not being able to predict large

day-to-day changes in the prediction error have prompted

the development of a new method, where KF is run

through an ordered set of analog forecasts rather than

in time. Analogs here are defined as past forecasts that

are similar to the current forecast (as measured by a

metric defined later) for which a correction in real time

is desired. Figure 1a shows the KF deficiency of pro-

ducing an accurate estimate of the current forecast

error when the error behavior constantly changes. The

time series shown are synthetic data generated for il-

lustration purposes. Observations (open circles) show

a daily sequence of alternating wind regimes, where

calm situations are followed by windier days. The raw

model prediction in this example tends to have larger

biases when winds are calmer. The forecast is issued to-

day during high wind conditions, and the prediction is for

lower winds. Being a recursive procedure, KF uses all the

available information to estimate the error of the current

forecast, giving higher weights to the most recent data. In

the cartoon example for the last forecast, KF weights

more days when errors were low given the windy condi-

tions, resulting in a correction that underestimates the

current forecast error (as indicated by the white arrow).

A way to account for this problem is to run KF through

an ordered set of analog forecasts rather than in time, as

illustrated in Fig. 1b. The analogs to the current forecast

are ranked (left to right) from the farthest (worst analog)

to the closest (best analog). By running KF through the

ordered (from worst to best) analogs the correction for

the current forecast gives more weight to the analog

forecasts closer to it. This results in a better correction

as can be seen by comparing the white arrows at the

forecast time (far right) in Figs. 1a,b.

If proper analogs are defined and found, such a pro-

cedure can cope with drastic changes in the forecast

error. For this reason, the key aspect of such an ap-

proach is to determine a suitable metric that ranks past

forecasts by how similar they are to the current forecast.
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That is, past predictions that are very similar to the

current forecast should also exhibit very similar errors.

Such a metric is defined as follows:

kFt, At9k5�
N

y

i51

wi

sf
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�
~t

j52~t

(Fi,t1j 2 Ai,t91j)
2

vuuut , (6)

where Ft is the forecast to be corrected at the given time t

and station location; At9 is an analog forecast at a time t9

before Ft was issued and at the same location, Ny and wi

are the number of physical variables and their weights,

respectively; sfi
is the standard deviation of the time

series of past forecasts of a given variable at the same

location; ~t is an integer equal to half the width of the time

window over which the metric is computed; and F
i,t1j

and Ai,t91j are the values of the forecast and the analog in

the time window for a given variable.

Analogs are searched across multiple physical vari-

ables and over a time window for a given location and

forecast time [Eq. (6)]. The idea is to find past forecasts

that were predicting similar values and temporal trends

for the forecasted quantity (wind speed in this study),

and for variables that exhibit correlations to the quantity

of interest (e.g., wind speed itself, wind direction, pres-

sure, etc.). The assumption is that if these forecasts are

found, their errors will likely be similar to the error of

the current forecast, which can be inferred from them. If

some quantities are known to be more correlated to the

quantity to be corrected, then they can be assigned a

higher weight (wi). The terms in the summation in Eq. (6)

are normalized with sfi
to allow for the combination of

physical variables with different units as well to avoid that

the metric value is dominated by a single variable. The

weight wi assigned to each of the variables used in Eq. (6)

to search for analogs is set to 1. No attempt was made to

find optimal values for wi.

d. Weighted analogs (AN)

The AN forecast is the weighted average of the ob-

servations that occurred when analog forecasts were

valid:

ANt 5 �
N

a

i51
giOAi,t

i

, (7)

where ANt is the AN forecast at time t at a given location,

Na is the number of analogs, fOAi,t
i
gi51,2,...,N

a
are the

verifying observations of the best Na analogs as measured

by the metric defined in Eq. (6), and ti are times when

these analog forecasts were issued (earlier than when the

FIG. 1. Schematic representation of a Kalman filter correction for wind speed prediction

(WSPD) (a) run in time (KF) or (b) through an ordered set of analog forecasts (ANKF). White

arrows at forecast time (far right) indicate the postprocessing methods estimate of the forecast

error. Circles indicate observations, asterisks refer to the raw prediction, and the dashed line

represent the corrected predictions.

NOVEMBER 2011 M O N A C H E E T A L . 3557



forecast to be corrected was issued). The weight associ-

ated with each analog (gi) is computed as follows:

gi 5

1

k(Ft, Ai,t
i
)k

�
N

a

j51

1

k(Ft, Aj,t
j

)k

, (8)

and is proportional to the inverse of the distance of the

analog from the forecast [Eq. (6)] and normalized with

the sum of the inverse of this distance computed for each

analog; the shorter the distance between an analog and

a forecast, the higher the weight that will be assigned to

the observation that verified when the analog was is-

sued. The weights sum to 1.

e. Example of AN and ANKF

Figure 2 shows an example of a set of analogs selected

for a 10-m wind speed forecast issued at a surface station

in central Montana at 0100 UTC 25 September 2009.

Figure 2a shows a 4-month time series of observed wind

speed (WSPD), with the verifying values (not available

at forecast time) shown with the black circle at the far

right of the plot and a continuous horizontal line. Figure

2b shows the time series of the raw model prediction of

WSPD, with the current forecast (to be corrected) in-

dicated by the solid black circle at the far right. For this

example, analogs were found by exploring the time se-

ries of wind speed (Fig. 2b) and direction (WDIR, Fig.

2c), surface pressure (P, Fig. 2d), humidity (Q, Fig. 2e),

and 10-m temperature (T, Fig. 2f). Similar to Figs. 2a,b,

in Figs. 2c–f the value at the forecast time (vertical

dashed line in each panel) is indicated by the solid black

circle and continuous horizontal line.

Also shown in this example are the 10 best analogs,

indicated by the shaded circles, along with each analog

rank. The shading indicates the quality of the analog: the

darker the better. The three best analogs are close in

FIG. 2. Example of a set of analogs selected for a 10-m wind speed forecast issued at a surface station in central Montana (at 44.698N,

111.108W) at 0100 UTC 25 Sep 2009. Observation of (a) wind speed (WSPD, m s21), (b) prediction of WSPD, (c) wind direction (WDIR, 8),

(d) surface pressure (P, hPa), (e) humidity (Q, g kg21) and (f) 10-m temperature (T, K). The solid black circle and horizontal black line

indicate the variable value at forecast time (vertical dashed line). The 10 best analogs are also shown, indicated by the shaded circles along

with each analog rank. The darker the shading, the better the analog.
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time to the current forecast; however, the most recent

forecast is not included in the 10 best analogs. Moreover,

the analogs from the fourth to the ninth ranking are

found in early May (i.e., four months before the current

forecast), while the tenth analog is more than a month

older than that. For the forecast to be corrected at this

location, issued at the end of September, the 10 best

analogs are found either a few days before, or toward the

end of spring, when the meteorological conditions were

closer to those of the current forecast than the conditions

found during the months of June, July, or August, that

were hotter and more humid (as shown in Figs. 2e,f).

The observed wind speed value at the forecast time is

3.1 m s21 (Fig. 2a, solid black circle at the far right),

while the raw forecast value is 5.2 m s21 (Fig. 2b, solid

black circle at the far right), which is corrected by AN,

and ANKF to 3.6, and 4.6, respectively (not shown). For

its estimate AN does not use three out of six of the most

recent forecasts, because they do not closely match the

forecast to be corrected, while ANKF uses them but with

lower weights. The differences among the two analog-

based methods described in the following section may

explain the difference in performance.

f. Key aspects of AN and ANKF

Important aspects of the new analog-based post-

processing procedures can be summarized as follows:

d Analogs are searched in forecast space only (i.e., no

observations are used to select the best analogs), and

across different meteorological variables that exhibit

correlations to the quantity of interest.
d Analogs are searched independently for each forecast

time and location; the assumption is that when the

space and period of the day from which analogs are

selected is reduced (in other words, by ‘‘localizing’’

the search procedure both in space and time), also the

degrees of freedom of finding matching forecasts are

reduced, resulting in a more tractable problem. This

can be contrasted with approaches where full three-

(space) or four- (space and time) dimensional fields

are compared while searching for analogs. Other

authors have presented analog-based approaches in-

cluding a localization strategy in space and time (Van

den Dool 1989, 1994; Hamill and Whitaker 2006). Van

den Dool (1989) reported that while previous attempts

to find analogs by matching large scale flow patterns

were discarded in the literature, an important factor

contributing to the success of his localized analog-

based method was ‘‘the lowering of the degrees of

freedom in finding matching states.’’
d ANKF and AN are both based on a weighted contribu-

tion of the analogs, where the weights are proportional

to the quality of the analogs. However, while ANKF

assigning these weights by running KF [i.e., with the

Kalman gain as defined in Eq. (4)] through the ordered

(from worst to best) analogs, AN directly estimates

each analog weight as directly proportional to his

closeness to the forecast [Eq. (8)].
d While KF and therefore ANKF is not optimal when

the assumptions of Gaussianity and linearity (section 2b)

are not met (as likely the case with the dataset presented

here including predicted and observed wind speed),

AN does not have these assumptions built in.
d While ANKF tries to estimate the current forecast

error, that is then subtracted from it, AN is based

purely on a linear combination of the observations that

verified when the best analog forecasts were valid.

3. Experiment description

a. NWP predictions

The postprocessing methods described in section 2 are

applied to 10-m wind speed forecasts from an opera-

tional mesoscale forecasting system based on the WRF

model (Skamarock et al. 2008). While the system pro-

vides 8 forecast cycles per day, the only forecasts

applied in this study are the 1–24-h forecasts (at 1-h

increments) issued at 0100 UTC. The operational WRF

system is run over the western United States with three

nested domains centered over northeast Colorado hav-

ing 30-, 10-, and 3.3-km horizontal grid increments and

37 vertical levels (12 levels are located in the lowest 1 km).

The parameterizations chosen for these experiments

include the Purdue Lin microphysics scheme, the Yonsei

University planetary boundary layer (PBL) scheme,

Monin–Obukhov for the surface layer, Kain–Fritsch for

the convective processes (only in the two coarser do-

mains), and the Noah land surface model for the land

surface scheme.

The model output postprocessing methods described

above are tested with observations from 400 surface

stations for a 6-month period (from 3 May 2009 to

8 November 2009). The stations are located within the

finest inner domain, and their spatial distribution covers

different topographical and land-use type: the central

Rocky Mountain with high elevation and complex to-

pography; the plains to the east of it; a few dry desert areas

to the south; and urban, suburban, and rural locations. A

1-yr-long independent dataset (described in section 5d) is

also used to study the effects of using datasets with dif-

ferent lengths on the analog-based methods’ performance.

b. Metrics

The following metrics are computed to evaluate the

performance of the different postprocessing methods.

NOVEMBER 2011 M O N A C H E E T A L . 3559



Following Taylor (2001), RMSE can be decomposed as

follows:

RMSE2 5
1

Np

�
N

p

i51
(Fi 2 Oi)

2
5 CRMSE2 1 BIAS2, (9)

where

CRMSE 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Np

�
N

p

i51
[(Fi 2 F) 2 (Oi 2 O)]2

vuuut , (10)

and

BIAS 5 F 2 O. (11)

The quantity Np is the number of available (Fi, Oi) pairs

with Fi and Oi being a forecast and observation at the

same time and location, and F and O are the prediction

and observation averages over the Np values. The cen-

tered root-mean-square error (CRMSE) is considered

to be the random component of RMSE, while the sys-

tematic component is represented by BIAS. The terms

CRMSE2 in Eq. (9) is equal to s2
f 1 s2

o 2 2s
f
s

o
r

fo

(Murphy 1988) where sf and so are the standard de-

viations of the marginal distributions of the forecast and

observations, respectively, and rfo is the Pearson corre-

lation coefficient between forecast and observations

(hereafter referred to as ‘‘correlation’’). We compute

also the normalized standard deviation (NSD), as sf /so.

Finally, we evaluate the Spearman correlation co-

efficient that can be thought of as the Pearson correlation

coefficient between the ranked variables, and is referred

to here as the ‘‘rank correlation’’ (Wilks 2006).

We include the above metrics in this analysis for the

following reasons:

d CRMSE gives an indication of errors other than bias,

and it can be associated with the intrinsic predictive

skill of the forecast that can be limited by the coarse or

nonexistent representation of specific physical pro-

cesses.
d BIAS estimates the systematic errors whose sources

may be the model misrepresentation of topography or

coastline complexity, offset parameter values, biased

initial conditions and inputs in general, etc.
d Correlation and NSD are used here to generate

Taylor’s diagrams (Taylor 2001). These plots allow

us to assess the degree of pattern correspondence

between the predictions and the observations.
d Rank correlation is a nonparametric (i.e., distribu-

tion free) statistic that measures the strength of the

monotone associations between two variables, allowing

for a nonlinear relationship between the predictions and

observations. It is appropriate when the quantity of

interest, wind speed in this study, exhibits a non-

Gaussian distribution. It is a robust and resistant

alternative to the Pearson correlation.

4. Sensitivity analysis for the analog-based methods

The sensitivity to a number of parameters and imple-

mentation options in Eqs. (6) and (7) for the new methods

ANKF and AN is presented. This is followed by an

analysis of the effects of using different quantities to

search for analogs.

The results of the sensitivity analysis can be summa-

rized as follows:

d Values for ~t (the half-width time windows over which

squared differences between analog and forecast

values are computed for a given location) in the set

figi50,1,. . .,12, i 2 N were tested, resulting in minimal

differences between the different runs, with a value

of ~t 5 1 producing the best results. For this reason,
~t 5 1 was used. Because the data used here have an

hourly frequency, this corresponds to a comparison

of the analog and prediction over a 2-h window, that

is able to capture the relevant information in terms of

the predicted value and its trend, based on the results

shown in section 5. Different datasets may have a differ-

ent optimal value for ~t.
d The Na values from 1 to 15 were tested; the perfor-

mance of the methods levels off around Na 5 10, and

then slowly drops off. Therefore, Na has been set to 10;

this number is likely dependent on the dataset length

(see section 5d) and the available physical variables

to search for analogs, and cannot be generalized for

other datasets and different applications of the analog-

based methods.
d We let t9 in Eq. (6) span any hour of the past days while

searching for analogs. The best results were obtained

when t9 was equal to the hour of the forecast to be

corrected, meaning that the diurnal behavior of errors

is an important aspect of forecast inaccuracy (as also

discussed in section 5b). For this reason we choose t9

equal to the forecast hour to be corrected, which also

produces a faster running algorithm than when t9 is

allowed to vary across all the hours of the day.

Next, we examine the effects of using different phys-

ical variables to search for analogs. Figure 3 shows the

results of this analysis: Figs. 3a,b show CRMSE and rank

correlation computed with Np equal to all the available

pairs (in space and time) of observations and predictions
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for a set of 17 sensitivity runs; Fig. 3c shows which vari-

ables were used in the search for analogs in each run [i.e.,

the variables used to compute the summation in Eq. (6)].

These include all the available variables in this dataset.

The ANKF (black solid bars) performs best when only

WSPD is used to search for analog (run 1), while the best

run for AN (white solid bars) is run 10 (WSPD, WDIR,

and P). The different behavior of the two methods is

expected, given the differences between the approaches

as explained in section 2f. Both methods perform well

with the run 10 configuration (WSPD, WDIR, and P),

and this is the option used for the results showed in

section 5. The inclusion of P rather than T or Q is mean-

ingful also from a physical point of view, given the stronger

relationship between WSPD and P rather than with T

and Q. Other variables that were not available in this

dataset, but that could have been useful while searching

for analogs for WSPD may have been variables carrying

information about the atmospheric stability at the loca-

tion of interest, such as the Monin–Obukhov length or the

PBL depth, or precipitation and cloud cover.

5. Results

The performances of the postprocessing methods are

tested with the NWP model runs and the metrics de-

scribed in section 3. First the metrics are computed with

all the available data. Then the same metrics are com-

puted with all the available data at a given time or point

in space. This section is concluded with an analysis of

the benefits of ANKF and AN with respect to KF when

using datasets with a different length in time.

a. Global metrics

Here the metrics are computed with Np equal to the

number of pairs of observations and predictions avail-

able across all stations and times. First, we checked if the

analog-based methods are doing what they have been

designed for. Figure 4a displays the improvements of 7-

Day (black circles), KF (white diamonds), ANKF

(white squares), and AN (white circles) methods relative

to raw NWP output (Raw), as a function of the magnitude

of the day-to-day variation of the raw forecast absolute

error (Eday). The same symbols for each method will be

used in the following figures (with solid five-point stars

associated with Raw) unless otherwise stated. Figure 4b

shows the counts of jEday 2 Eday-1j binned in increments of

0.25 m s21. The relative improvement of KF and 7-Day

methods with respect to Raw starts at 40% and 30%,

respectively, when there is no day-to-day change of the

forecast-error magnitude. But as jEday 2 Eday-1j grows,

the improvements rapidly drop and become negative

for jEday 2 Eday-1j bigger than 3 m s21. This confirms

the weakness of both methods as discussed in sections

2a,b. Because the 7-Day method is slower to adapt to

forecast-error changes, its performance is inferior to KF.

For the majority of the cases (as shown by the counts in

Fig. 4b) the application of both methods results in an

improvement over the raw model output.

FIG. 3. (a) CRMSE (m s21), (b) rank correlation, and (c) phys-

ical variable used to search for analogs against 17 sensitivity runs.

In (a) and (b), solid black bars refer to the results of the post-

processing method based on running KF through an ordered set of

analog forecasts (ANKF), and solid white bars refer to the results

to the method solely based on analogs (AN).

FIG. 4. (a) Improvements (%) of the postprocessing methods

relative to the raw forecast (Raw) as a function of the magnitude of

the day-to-day variation of forecast absolute error (Eday, m s21).

The methods are the 7-day running-mean correction (7-Day, solid

black circles), the KF (solid white diamonds), KF run through an

ordered set of analog forecasts (ANKF, solid white squares), and

the method based only on analogs (AN, solid white circles). (b)

Counts over all the stations and the period analyzed in this study of

the binned magnitude of the day-to-day variation of Eday (in-

crements of 0.25 m s21).
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ANKF also exhibits a decreasing improvement with

respect to Raw with increasing jEday 2 Eday-1j, but with

a much gentler slope than the KF or 7-Day method.

ANKF always leads to positive improvements going

from about 38% when jEday 2 Eday-1j is equal to 0, down

to 15% when jEday 2 Eday-1j is equal to 8 m s21. In con-

trast, AN manifests an increase in improvement with

respect to Raw with increasing jEday 2 Eday-1j, going from

30% with no error change up to 40% when jEday 2 Eday-1j
is close to its maximum, 8 m s21.

Both ANKF and KF are better than AN when jEday 2

Eday-1j is lower than roughly 1.0 m s21. However, when

such error grows larger, AN gets quickly better than the

KF-based methods, with quite large improvements with

respect to both. This means that ANKF tends to weight

higher than AN the contribution from the best analog

(and KF weights high the most recent forecast). Being

that both ANKF and KF are based on a recursive pro-

cedure, they can be seen as an exponential weighted mean

as explained in section 2b. However, this exponential

weighting strategy of the KF-based methods pays off only

when the best analog is an excellent match (as when the

day-to-day error change little); but AN has an advantage

in all the other cases, being its weights directly propor-

tional to their closeness to the forecast, and therefore able

to account for their quality more effectively. The counts

in Fig. 4b show that ANKF is better than AN roughly 40%

of the times, and this contributes to the explanation of the

overall performance differences between the two methods

presented in the reminder of this section.

The results shown in Fig. 4 underline the benefits of

the analog concept: if a correction is done by inferring

the current forecast error from past forecasts with sim-

ilar characteristics, the quality of such correction does

not suffer from sudden changes in model error, as long

as similar forecasts were recorded in the past.

A concise way to display and study the metrics is to

use a Taylor diagram. It can be used to create a multi-

statistic plot of correlation, CRMSE, and NSD (Fig. 5),

and it allows us to estimate the degree of pattern cor-

respondence between the predictions and the observa-

tions (Taylor 2001). Correlation and NSD are computed

for each method and the observations, and are then

plotted on the diagram with polar coordinates defined

by the pair (correlation and NSD). The CRMSE of

a given method corresponds to the distance on the dia-

gram between the marker representing the method and

the one representing the observations (black square).

The AN is the closest to the observations, followed by

ANKF, KF, 7-Day, and the Raw prediction. Raw has the

best NSD, close to the perfect value of 1 (i.e., when the

standard deviation of the forecasts is equal to the stan-

dard deviation of the observations), while 7-Day and KF

overestimate the standard deviation of the observations,

and ANKF and AN underestimate it. However, all post-

processing methods improve the correlation with obser-

vations when compared to Raw, resulting in points closer

(i.e., with lower CRMSE) to the solid black square cor-

responding to the observation.

Given the relationship expressed by Eq. (9), if CRMSE

is plotted against bias, then the distance of a point on that

diagram from the origin is equal to RMSE. Figure 6 il-

lustrates such a diagram for the raw forecast and the

postprocessing methods, where the gray circular lines

have a radial distance from the origin equal to the RMSE

of each prediction. All methods perform well in terms of

reducing the bias of Raw, AN being the best, followed by

KF, ANKF and 7-Day. All methods also reduce CRMSE,

with AN being again the best, followed by ANKF, KF, 7-

Day, and then Raw. The latter is also the ranking of the

methods when RMSE is the metric considered.

It is important to notice that these methods not only

reduce the bias component of RMSE, but also the re-

maining portion of it. The former can be seen as the

ability of the methods to reduce the difference of the

FIG. 5. Taylor diagram showing the raw forecast (Raw, 5-point

solid white star), and the postprocessing methods: the 7-day running-

mean correction (7-Day, black circles), the KF (white diamonds),

KF run through an ordered set of analog forecasts (ANKF, white

squares), and the method based only on analogs (AN, white circles).

The azimuthal position gives the correlation (straight gray lines),

while the radial distance from the origin is proportional to the nor-

malized standard deviation (circular gray lines). The black square

represents the observations. The distance between the observation

and a given point (black circular lines) is proportional to the

CRMSE between the observations and the forecast having the

correlation and standard deviation of the given point.
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central location of the forecasts and the observations,

while the latter results from the ability to add predictive

skill to the raw forecast by reducing random errors.

The AN is based purely on the verifying observations of

the analogs, that provide physically based insight on the

atmospheric state, improving the prediction skill. More-

over, using past observations to produce the prediction

as with AN, results in an efficient downscaling procedure

that eliminates representativeness issues associated with

the fact that the observations are typically instantaneous

(or averaged over a brief period of time) at a given lo-

cation, while models provide averages over volumes and

time periods corresponding to the computational domain

grid boxes and integration time step, respectively.

b. Metrics evaluation as a function of time

In this section the metrics are computed with all the

available data at a given time (i.e., Np equal to the

number of pairs of observations and predictions avail-

able at a given time and across all the stations), and for

each of the 24 forecast hours available. Figures 7, 8, and

9 show the temporal variation of CRMSE, bias, and rank

correlation, respectively. The shaded areas (light gray)

in these figures correspond to nighttime hours, where

sunrise–sunset times are estimated for the domain cen-

tral location as an average of the daily values over the

experiment period. The 95% bootstrap confidence in-

terval of the computed statistics is shown by the shaded

areas in darker gray underneath the markers representing

the different methods.

The collapse of the PBL is often a challenging process

to be predicted, and that is reflected by the jump in

CRMSE values for all methods right after sunset, even

though this increase in random errors is much less pro-

nounced for the analog-based methods when compared

to Raw, 7-Day, and KF (Fig. 7). This is another indication

of the analog-based methods’ ability to improve the pre-

dictive skill. Throughout the night, the CRMSE values

stay constant or even decrease. Around sunrise, all

methods see an increase in CRMSE, given the longer

forecast time and the uncertainly associated with the

prediction of the PBL growth during daytime. Based on

this metric, ANKF and AN show improvements across

all the forecast hours with respect to KF in the range

of 10% and 20%, respectively; and with even larger

FIG. 6. Bias (m s21) as a function of CRMSE (m s21), showing

the raw forecast (Raw, 5-point white star), and the postprocessing

methods: the 7-day running-mean correction (7-Day, black circles),

the KF (white diamonds), KF run through an ordered set of analog

forecasts (ANKF, white squares), and the method based only on

analogs (AN, white circles). Gray circular lines have a radial dis-

tance from the origin equal to the RMSE values of each prediction.

FIG. 7. Temporal evolution of CRMSE (m s21) for the raw

forecast and postprocessing methods across the 24 h of forecast

(issued at 0100 UTC): raw forecast (Raw, 5-point white star), the

7-day running-mean correction (7-Day, black circles), the KF

(white diamonds), KF run through an ordered set of analog fore-

casts (ANKF, white squares), and the method based only on ana-

logs (AN, white circles). Nighttime hours are shaded in light gray

(sunrise–sunset times are estimated for the domain central location

as an average over the experiment period). The 95% bootstrap

confidence interval of the computed statistics is shaded in dark gray

underneath the method markers.

FIG. 8. As in Fig. 7, but for bias (m s21).
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improvements with respect to Raw and 7-Day with

values around 25% and 35%, respectively. The AN is

consistently the best across the forecast period, showing

statistically significant improvements over ANKF on the

order of 10%.

Figure 8 shows similar results, but for bias. The raw

forecast exhibits a strong diurnal cycle for bias with

a peak right after sunset while the collapse of the PBL is

occurring, high values through the night, a minimum in

the early morning, and then rapidly increasing values in

the afternoon. All postprocessing methods drastically

reduce the bias of the raw forecast, with AN being the

best, having values close to zero for the first half of the

forecast. The KF shows a nearly constant-in-time bias of

around 0.1 m s21, whereas the analog-based methods’

bias increases toward the end of the forecast, particularly

after hour 22. Confirming what was found in Fig. 6,

ANKF has, on average, a higher bias than KF and similar

values to 7-Day.

The temporal evolution of rank correlation values for

each method is shown in Fig. 9. All methods show a di-

urnal cycle, with ANKF and AN being the best, and AN

being statistically significantly better than ANKF for all

the 24 forecast hours. With this metric, AN provides av-

erage improvements of around 40%, 25%, 20%, and 5%

with respect to Raw, 7-Day, KF, and ANKF, respectively.

c. Metrics evaluation as a function of space

An analysis of the spatial distribution of the method’s

skill is presented, where the metrics are computed with

all the available pairs of observations and predictions at

each station (i.e., Np equal to the number of the pairs of

observation and predictions available at a given station

across all the times), and for all the 400 stations avail-

able. Figures 10, 11, and 12 show the results of CRMSE,

bias, and rank correlation, respectively. Each colored

circle represents the value of the statistics computed

with data from the station at that location. In this

subsection, only Raw, KF, ANKF, and AN are ana-

lyzed, given that the pattern of performance shown

previously for 7-Day is repeated when the metrics are

computed for each station (not shown).

As shown in Fig. 10 (particularly for Raw and KF),

CRMSE values tend to be higher in the western portion

of the domain where in general the predictive skill of the

forecast is lower given the challenge posed by modeling

the atmospheric flow in areas with complex topography.

The AN shows (with few exceptions) lighter colors cor-

responding to lower CRMSE values when compared to

the other methods. The ANKF is a close second, fol-

lowed by KF and Raw that show darker colors corre-

sponding to higher CRMSE. This performance pattern

prevails regardless of the different topographical and

land-use characteristics of the locations considered, un-

derlying the robustness of the new analog-based methods

tested across a range of conditions. Similarly, Fig. 11

shows the spatial distribution of bias for the four

methods. All postprocessing procedures successfully

reduce the bias of the raw forecast. The KF performs

better than ANKF and AN in the northeast region of

the domain, whereas in the remaining portion of the

domain AN is the best. At a few stations, as indicated

by the red circles, the bias value is high for all the

methods. These could be an indication of an observation

of low quality, particularly when nearby stations show

much lower biases. If such a problem exists at a particular

location across different metrics and methods, then the

sensors at that location may be providing unreliable

observations and could be removed from the observa-

tions list; effectively, this would be equivalent to using

the postprocessing methods as part of a quality-control

procedure, which would improve not only the post-

processing step, but also the performance of data as-

similation algorithms as well as the fidelity of

verification results.

The differences across rank correlation values among

the different methods as shown in Fig. 12 are less evi-

dent. ANKF and AN improve rank correlation values

(i.e., darker colors) with respect to KF in the mountain

regions over the western part of the domain. Overall AN

exhibits the highest rank correlation values, followed

closely by ANKF, and then by KF and Raw.

d. Skill scores of ANKF and AN versus KF as
a function of dataset length in time

The effect of different dataset lengths on the effec-

tiveness of the analogs found is investigated. Good an-

alogs are those predictions from the past that are similar

FIG. 9. As in Fig. 7, but for rank correlation.
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enough to the forecast that produce skillful ANKF and

AN.

For this analysis, an independent NWP model dataset

is used, that includes 1-yr-long (2005) time series of

hourly observations and predictions from 22 stations over

New Mexico. Wind forecasts with 1–24-h forecasts (at 1-h

increments) were generated with the fifth-generation

Pennsylvania State University–National Center for At-

mospheric Research (PSU–NCAR) Mesoscale Model

(MM5), run with 3.3-km horizontal grid increments and

issued at 1200 UTC on a domain centered over White

Sands Missile Range in New Mexico. The variables used

to search for analogs include wind speed and direction,

and temperature (the only variables available with this

dataset). For more information on this dataset, see sec-

tion 2a and Fig. 1 in Hacker and Rife (2007).

Figure 13 shows the skill score (i.e., the relative im-

provement in percent for a given metric) of ANKF (gray

lines) and AN (black lines) with respect to KF, for both

CRMSE (solid white squares) and rank correlation

(solid white circles), and as a function of the dataset

length (starting with the first two months and up to all

12 months of the year 2005). The skill score for bias is

not shown, given that all postprocessing procedures

successfully reduce the bias of the raw forecast (see

Figs. 6, 8, and 11).

ANKF shows increasing improvements as the available

dataset gets longer (except at 4 months for rank corre-

lation), with maximum improvements of 11% (CRMSE)

and above 8% (rank correlation) with a 12-month-long

dataset. The AN shows steeper improvements than

ANKF when compared to KF. Again, these improve-

ments steadily increase with the increase of the dataset

length (with the same exception at 4 months for rank

correlation). With a 2-month-long dataset, the CRMSE

value for AN is higher than the value for KF by more

FIG. 10. Spatial distribution of CRMSE (m s21) for the (a) raw forecast (Raw), (b) the KF, (c) KF run

through an ordered set of analog forecasts (ANKF), and (d) the method based only on analogs (AN).
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than 8% and by 6% for rank correlation, while with

a 12-month dataset these improvements increase to

15% and more than 11%, respectively. The temporary

drop of skill score at month four (April 2005) for both

ANFK and AN may be due by the seasonal weather

changes from winter to spring. Indeed, it may be diffi-

cult to find good analogs for forecasts issued in early

spring given that the previous months belong to a different

season. For the same reason, the skill score tends to flatten

out or even decrease after month 10 (October 2005), be-

cause of the seasonal transition from summer to fall.

If the current forecast is for a rare prediction in the

tails of the model-forecast climatological distribution, in

order to find good analogs there will likely be the need to

look far back in the past. On the other hand, good an-

alogs of a forecast that is closer to climatology would

likely be found with a shorter dataset, possibly with data

from the same season. When longer datasets are available,

the overall chance of finding analogs similar to the forecast

that would improve the performance of the analog-based

methods is higher. This explains why both ANKF and AN

improve their performance with respect to KF with longer

datasets. The reason why improvements of AN are steeper

than the ones of ANKF may resides in the differences

between the two methods listed at the end of section 2f.

Both methods are based on a weighted contribution of

the analogs, but the way these weights are computed is

different. In AN these weights are directly proportional

to the closeness of an analog to a forecast. This may

result in a more efficient and direct strategy to benefit

from a higher quality of the selected analogs, than

running KF through an ordered set of analogs and

compute the weights with the Kalman gain [Eq. (4)] as

in ANKF.

This finding resonates with the notion that reforecasts

can greatly improve weather predictions (Hamill et al.

FIG. 11. As in Fig. 10, but for bias (m s21). Red circles indicate stations for which bias is high regardless of

the postprocessing method applied to the raw forecast (see discussion in text).
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2006). It is argued here that, if multiple-year datasets

were available, even larger improvements than what are

found in this study may be obtained with the analog-

based methods. These improvements should benefit

both the forecasts that are close to the climatological

behavior of the model, and the rare predictions. The

former would benefit from a collection of several data

points belonging to the same season across different

years, whereas for the latter the possibility of finding

similar predictions to the forecast to be corrected would

be higher if multiple years were available.

6. Summary and conclusions

Two new postprocessing methods to improve numerical

weather predictions have been introduced. These methods

overcome a difficulty of a postprocessing algorithm in-

spired by the Kalman filter (KF) and a 7-day running-

mean correction (7-Day) in dealing with sudden changes

of the forecast error that could be caused by rapid tran-

sitions from one weather regime to another.

The new methods rely on the analog concept. The

analog of a forecast for a given location and time is

defined as a past prediction that matches selected fea-

tures of the current forecast. Analogs are searched across

multiple physical variables and over a time window for

a given location and forecast time. Good analogs are

forecasts that predicted similar values and temporal

trends of the forecasted quantity for which the error

needs to be estimated (wind speed in this study), and

for other variables that exhibit correlation to the latter

(e.g., wind speed itself, wind direction, pressure, tem-

perature, humidity, etc.). If forecasts in the past can be

found that are similar to the current prediction, then

the current prediction error can be inferred by ana-

lyzing the errors of the analogs, for which verifying

observations are available. The two new methods are

the following:

FIG. 12. As in Fig. 10, but for rank correlation.
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d ANKF that consists in running KF through an ordered

set of analog forecasts rather than in time. The analogs

to the current forecast are ranked from the farthest

(worst analog) to the closest (best analog). By running

KF through the ordered (from worst to best) analogs,

the correction for the current forecast gives more

weight to the analog forecasts closer to it, resulting in

a better correction than KF, particularly when a large

variation in the day-to-day forecast error occurs.
d AN that consists of a simple method based purely on

a weighted average of the observations that verified

when the 10 best analog forecasts were valid [Eq. (7)].

The weights are proportional to the inverse of the

distance of the analog from the forecast [as estimated

with Eq. (6)], normalized with the sum of the inverse

of this distance computed for each analog, and sum to 1

[Eq. (8)].

Important features of the new methods include the

following:

d Analogs are searched in forecast space only (i.e., no

observations are used to select the best analogs), and

across different meteorological variables that exhibit

correlations to the quantity of interest.
d Analogs are searched independently for each forecast

time and location; the assumption is that when the

space and period of the day from which analogs are

selected is reduced (in other words, by ‘‘localizing’’ the

search procedure both in space and time), also the de-

grees of freedom of finding matching forecasts are re-

duced, resulting in a more tractable problem. Moreover,

the success of the time–space localization adopted here

while searching for analogs is an indication that common

locations and times are good analog predictors.
d Given their design, both analog-based methods do not

suffer from missing predictions or observations values,

this being a clear advantage over KF and 7-Day.

The postprocessing methods have been applied to 10-m

wind speed forecasts with 1–24-h forecasts (at 1-h in-

crements) issued at 0100 UTC from the Weather Re-

search and Forecasting modeling system run with a

3.3-km horizontal grid increment over the central

United States. The methods were tested with observa-

tions from 400 surface stations for a 6-month period. The

results can be summarized as follows:

d ANKF and AN are able to produce skillful corrections

of the raw forecasts (Raw), even with large day-to-day

changes in forecast error.
d Since AN provides a prediction based on past obser-

vations, it results in an efficient downscaling procedure

that eliminates representativeness issues associated

with the fact that observations and model output can

be associated with quantities averaged over different

spatiotemporal scales.
d All methods are successful in reducing the bias of

Raw, where AN produced the lowest values (approx-

imately 0 m s21), followed by KF, ANKF, and the 7-

Day running-mean correction.
d The postprocessing methods not only reduce system-

atic errors but also random errors (i.e., they improve

the predictive skill of the original forecast). When

looking at CRMSE, ANKF and AN show improve-

ments across all the forecast hours. Compared with

KF, the improvement from ANKF and AN was in the

range of 10% and 20%, respectively. There were even

larger improvements with respect to Raw and 7-Day,

with values close to 25% and 35%, respectively. The

AN is consistently the best across the forecast period,

showing statistically significant improvements over

ANKF on the order of 10%. The AN is based purely

on verifying observations of past predictions that are

similar to the forecast (i.e., the analogs), that provide

physically based insight about the atmospheric state,

thus improving the predictive skill of Raw.
d For rank correlation scores, AN provides average

improvements of around 40%, 25%, 20%, and 5% with

respect to Raw, 7-Day, KF, and ANKF, respectively.
d Based on the Taylor diagram, AN shows a better

pattern of correspondence between predictions and

observations, followed by ANKF, KF, 7-Day, and Raw.
d The above relative performances prevail regardless

of the time of the day, and for all of the different

topographical and land-use characteristics of the

FIG. 13. Skill score (%) as a function of dataset length (month) of

the KF run through an ordered set of analog forecasts (ANKF, gray

lines) and the method based only on analogs (AN, black lines)

against KF, and computed for CRMSE (m s21, solid white squares)

and rank correlation (solid white circles).
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locations considered. This demonstrates the robust-

ness of the new analog-based methods.
d When longer datasets are available, the overall per-

formance of the analog-based methods is improved

because of the increased likelihood to find good analogs

in extended training periods. When extended training

periods are not available, the training dataset can be

extended by looking for analogs in surrounding loca-

tions, as found useful by Van den Dool (1989, 1994) and

Hamill and Whitaker (2006).
d Although future studies will be needed to address the

general applicability of the new analog-based methods,

we believe that both ANKF and AN have the potential

to be applied with success to different prediction

systems and variables, given that their design does

not depend on the specific variables or models used in

this study. Both methods have been tested success-

fully with data from two independent modeling

systems, as explained in sections 3a and 5d. More-

over, the KF method used in our study has been

applied with success for temperature and precipita-

tion (Roeger et al. 2003; McCollor and Stull 2008),

surface winds (Roeger et al. 2003), ozone concentra-

tion (Delle Monache et al. 2006, 2008), particulate

matter (Djalalova et al. 2010; Kang et al. 2010), and

solar radiation (Rincon et al. 2010), and therefore we

think that ANKF too has the potential to be applied

successfully for other variables.
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